Pat Murphy

1

BAUSCH+LOMB

- Achieved through utilization of Good Manufacturing Practice in
 - Managing Equipment
 - Process/systems Engineering
- What to focus on?
 - What efforts add value?
 - Are you using time efficiently?
 - Sensibly employing technology?

Get it right first time every time- Building quality into everything you do!

BAUSCH + LOMB See better, Live better,

<u>People</u>

- People- Your most important asset
 - Engage with staff on Process Engineering/improvement projects
 - Ensure up date to training
 - Train beyond specific job function as it ensures
 - Greater engagement
 - Better at troubleshooting
 - Happy empowered employees = happy customers
 - Communications- Brief 5 min meeting each morning sharing details/data on:-
 - quality, yields, targets, etc..

BAUSCH+LOMB

Systems-Lens Design Integrity

- Robust system for managing lens design changes/enhancements
- Verification Protocol for t/fer of your designs to 3rd Party Manufacturers
- It is a requirement of ISO 13485:2003 to plan and control product design and development

Systems-Lens Design Integrity

BAUSCH+LOMB

- Transferring lens design. Verification protocol:-
 - What Products? •
 - With who? •
 - With what? •
 - How? •
 - Measurement? •
 - Inputs? •
 - **Outputs?** .

1.0	Introduction	.3
	1.1 Objective	.3
	1.2 Scope	.3
	1.3 Pre-requisites	.3
2.0	Responsibilities	.4
3.0	Procedures and Specifications	.4
4.0	Documentation Requirements	.4
5.0	Verification procedure	.5
	5.1 Manufacture of lenses	.5
	5.2 Inspection of lenses at Customer facilities .	.6
	5.3 Packaging & shipping of lenses to B+L	.6
	5.4 Inspection of lenses by B+L	.6
6.0	Acceptance Criteria	.7
7.0	Qualification Disposition	.7
8.0	Product Disposition	.7
9.0	Revision History	.8
10.0	Attachment Index	.8

CONTENTS

Introduction

СН 🕂 і RA S See better. Live better.

- Ensure equipment is installed & set up correctly i.e. Validated
- Advantages:
 - Better understood process and equipment capabilities
 - Reduced scrap and defect costs
 - Reduced/optimised cycle time
 - Reduce customer returns
 - Smooth running process

BAUSCH+LOMB

3 stages of equipment install & validation

- 1. Pre purchase phase
 - Vendor Selection
 - Build & test
 - Deliver
- 2. Installation
- 3. Operational and Performance testing

BAUSCH+LOMB

- 1. Pre Purchase phase
- User Requirements Specification –what you want
- Functional Design Specification-Detailed technical document of how vendor meets your URS
- Test at vendor facility before shipping:-
 - Pre- Delivery Qualification (PDQ)

Or

Factory Acceptance Test (FAT)

BAUSCH+LOMB

- 2. Installation
- Site Acceptance Test- conducted by vendor
- Installation Qualification (IQ)- Conducted by purchaser
 - Correct & safe hookup
 - Calibrated/set up correctly
 - Correct materials/consumables used
 - Understand critical settings
 - Operating procedures (SOP's), Work Instructions (WI's)
 - Maintenance schedule
 - Critical spares

BAUSCH+LOMB

- 3. Operational & Performance Testing
- Operational, Performance Qualification (OQ/PQ)
 - Parameters set to recommended
 - Worst case testing- limits of equipment for different products?
 - If needed conduct testing with different lens designs to determine settings
 - Test to ensure yield and quality to required standard is repeatable
 - Revise SOP's WI's as needed during OQ/PQ stage

BAUSCH + LOMB See better, Live better,

BAUSCH+LOMB

Process layouts

• Functional/Process Layout: Similar Ops grouped together

• Greater equipment Utilisation

 Easy to supervise & expand

High WIP & handling

+

More space needed

BAUSCH + LOMB See better, Live better,

Process Layouts

• Cellular Layout: Dissimilar m/c's arranged to economise flow

BAUSCH + LOMB See better. Live better.

Roadmap to Improvement

Two approaches to help you problem solve

BAUSCH+LOMB

Understanding Your Process

• Metrics

Measure Everything That Results in Customer Satisfaction

- Statistical tools
 - Capability analysis
 - MSA: Gauge Repeatability & Reproducibility etc....
- Understanding Efficiencies
 - Process map & Activity study help gather data on waste:-
 - Transport

Over producing

Inventory

Over Processing

- Motion
- Waiting

Defects

BAUSCH+LOMB

A study of activities (equipment & people) in a production process over a fixed time period

- Gather data to help answer:-
 - Process Efficiency & Overall Equipment Effectiveness (OEE)
 - Are equipment & personnel being utilized sensibly?
 - Hidden process steps?
 - Do you have capacity to increase or introduce new products or
 - Do you need more equipment?
 - Do you need more personnel?

BAUSCH+LOMB

• Develop codes for machine & personnel tasks:

Codes									
	Machine codes	Operator codes							
			Productive	18	coolant fill				
А	run	1	load/Unload m/c	19	Prepare wheels for m/c'ing				
В	stop- waiting on operator	2	-	20	investigate dim. errors				
С	stop - waiting on maint.	3	change over	Non productive					
D	stop- waiting on tech.	4	tool change	21	present but unoccupied				
E	stop- change over	5	measure wheel	22	absent				
F	stop- tooling change	6	paperwork	23	personal breaks				
G	stop- crash	7	clean m/c	24	meal breaks				
Н	stop- coolant fill	8	clean area, packaging, swarf etc						
J	stop- adjustment	9	transport product	Date					
К	stop- part load error	10	absent- sourcing product	Shift					
L	stop- wash tank water fill	11	absent- sourcng tooling	Observer					
М	Stop- investigate dim. errors	12	absent- sourcing gauging	Operator 1					
Ν	Stop- no product	13	absent- sourcing paperwork	Operator 2					
0	Stop- load/unloaded	14	m/c adjustment	Operator 3					
Р	Stop-tech	15	print part						
Q	Stop-maint	16	adjust reamer						
R	Stop-clean	17	dry part (after wash)						

BAUSCH+LOMB

- Determine time frame to study:
 - Full shift most accurate

List all equipment & People

			M/C 18	M/C 19	M/C 20	Check M/C	Wash tank	Op 1
	hour 1	0.00	Run	Run	C/O	Run	Run	C/O
sreak nour	6-6.55	0.05						
nto 5 min		0.10						
		0.15						
egments		0.20						
		0.25						
		0.30						
		0.35						
		0.40						
		0.45						
		0.50						
		0.55						
	hour 2	0.00						
	7,7 55	0.05						

BAUSCH+LOMB

• Example of monitoring:

BAUSCH + LOMB See better. Live better.

• Example of monitoring:

BAUSCH + LOMB See better, Live better,

Understanding Your Process

- Following study categorize process into
 - Value-added to customer
 - Non-value-added to customer (traditional waste)
 - Non-value –added-but necessary (e.g. regulatory)
- Express as Process Efficiency
 - Map process (inputs, steps, outputs) into value add and non value added steps to determine process efficiency

Process Efficiency

 $(\frac{Value \ added \ time}{(Value \ added \ time + non \ value \ added \ time})}$

BAUSCH+L

Keeping control-sustain

- Process Control vital to sustaining and supporting an efficient process
- Work Instructions/SOP's. Mistake proof procedures using graphs, photo's, flow charts etc...

BAUSCH+LOMB

Keeping control-sustain

• On going monitoring- Run Chart

- Distinguishes between common and special cause variation
- Helps with decision making regarding making process adjustments

BAUSCH + LOMB See better. Live better.

Keeping control-sustain

- On going monitoring
 - Monitor performance over time to detect trends and monitor changes made

BAUSCH+LOMB

In summary, an efficient process leads to

- Reduced non value added activities
- Increased capacity & quality
 - Optimised process layout
 - Mistake Proof streamlined procedures
 - Engaged productive employees
 - Optimised use of equipment

Continuous monitoring and improvement are key to long term success

BAUSCH+LOMB

Thank you for your time!!

BAUSCH+LOMB